ESTIMATES OF THE LEAST PRIME FACTOR OF A BINOMIAL COEFFICIENT

P. ERDŐS, C. B. LACAMPAGNE, AND J. L. SELFRIDGE

Dedicated to the memory of D. H. Lehmer

Abstract

We estimate the least prime factor p of the binomial coefficient $\binom{N}{k}$ for $k \geq 2$. The conjecture that $p \leq \max (N / k, 29)$ is supported by considerable numerical evidence. Call a binomial coefficient good if $p>k$. For $1 \leq i \leq k$ write $N-k+i=a_{l} b_{l}$, where b_{i} contains just those prime factors $>k$, and define the deficiency of a good binomial coefficient as the number of i for which $b_{l}=1$. Let $g(k)$ be the least integer $N>k+1$ such that $\binom{N}{k}$ is good. The bound $g(k)>c k^{2} / \ln k$ is proved. We conjecture that our list of 17 binomial coefficients with deficiency >1 is complete, and it seems that the number with deficiency 1 is finite. All $\binom{N}{k}$ with positive deficiency and $k \leq 101$ are listed.

1. Good binomial coefficients

Consider a sequence of $k \geq 2$ positive integers $\{n+i\}=n+1, \ldots, n+k$, with $n+i=a_{i} b_{i}$, where $p \mid a_{i}$ implies $p \leq k$, and $p \mid b_{i}$ implies $p>k$ for any prime p; i.e., the a_{i} have the prime factors up to k, and the b_{i} have all the larger prime factors.

Since the binomial coefficient $\binom{n+k}{k}$ is an integer, $k!\mid \prod a_{i}$. We are concerned with the least prime factor of any number in the sequence, except for those composing k !, that is, the least prime factor of $\binom{n+k}{k}$.
Definition 1A. A sequence of consecutive integers $a_{1} b_{1}, \ldots, a_{k} b_{k}$, where $p \mid a_{l}$ implies $p \leq k$, and $p \mid b_{i}$ implies $p>k$, is said to be good if $\prod a_{l}=k!$.

We denote the least prime factor of m by $p(m)$. We frequently find it convenient to write $N=n+k$.
Definition 1B. The binomial coefficient $\binom{N}{k}$ is said to be good if $p\left(\binom{N}{k}\right)>k$.
Note that Definition 1B is equivalent to stating that the k-sequence $\{N-$ $k+i\}$ is good or that $\prod a_{l}=k!$ or that $\operatorname{gcd}\left(\binom{N}{k}, k!\right)=1$. Further, when k is fixed and $\binom{N}{k}$ is good, we say that N is good with respect to k.

Ecklund, Erdős, and Selfridge [1] studied the function $g(k)$, the least integer $N>k+1$ such that $p\left(\binom{N}{k}\right)>k$, so $g(k)$ is the least N. which is good with respect to k. They showed that $g(k)>2 k$ for $k>4$ and established weak upper and lower bounds on $g(k)$. They determined $g(k)$

[^0]Table 1. Relative minima and maxima of $g(k), k \leq 149$

Relative minima							
k	$d>0$	$g(k)$	k	Maxima		Maxima	
2		6	2	$g(k)$	6	k	

for $2 \leq k \leq 40$ and $k=42,46,52$, and showed by direct search that $g(k)>2.5 \times 10^{6}$ for all other $k \leq 100$. After discussion with us, Scheidler and Williams [5] found all values of $g(k)$ for $k \leq 140$, using the new open architecture sieve at the University of Manitoba. The list of these values appears in [5], and the sieving continues. In Table 1 we present $g(k)$ where $g(k) \leq g(t)$ for $k<t<150$ and where $g(k) \geq g(t)$ for $t<k$. No doubt, $g(k)$ increases faster than polynomially and surely $g(k)<(1+c)^{\pi(k)}$, but we have no proof. When k is large, it is clear to every right-thinking person that $\binom{N}{k}$ has a prime factor in $(k / 2, k)$ for every $N<\exp (c k / \ln k)$. It seems that $g(k)$ increases very irregularly, and no doubt,

$$
\lim \sup g(k+1) / g(k)=\infty, \quad \liminf g(k+1) / g(k)=0
$$

Note that $g(29) / g(28)>846$, and $g(99) / g(98)<1 / 1872$.
Up to $k=148, g(k+1)-g(k)=0$ or 1 only at $k=3,10,18$ and 36 .
It was shown in [1] that there is an absolute constant $c>0$ for which $g(k)>k^{1+c}$. Since c is small, the following is an improved lower bound.

Theorem 1. There holds $g(k)>c_{1} k^{2} / \ln k$, for some absolute constant $c_{1}>0$. Proof. We first show that if $k^{7 / 4} \leq N<c_{1} k^{2} / \ln k$, where $k>k_{0}\left(c_{1}\right)$, then $\binom{N}{k}$ has a prime factor p satisfying

$$
\begin{equation*}
k / 2<p<k / 2+k^{3 / 4} . \tag{1}
\end{equation*}
$$

Begin by noting that Ingham [3] proved that the number of primes p satisfying
(1) is greater than $k^{3 / 4} /\left(c_{2} \ln k\right)$ for some absolute constant c_{2}. By an averaging argument, there are two primes p_{1} and p_{2} satisfying

$$
\begin{equation*}
k / 2<p_{1}<p_{2}<p_{1}+c_{2} \ln k<k / 2+k^{3 / 4} \tag{2}
\end{equation*}
$$

and $p_{1}<k / 2+k^{3 / 4}-2$. Now we show that for $k^{7 / 4} \leq N<c_{1} k^{2} / \ln k$, either p_{1} or p_{2} divides $\binom{n+k}{k}$. Let $t p_{1}$ be the largest multiple of p_{1} which is less than or equal to n, so that $n<(t+1) p_{1}$. It follows immediately from (2) that if $t p_{1} \leq n-2 k^{3 / 4}+4$, then $(t+2) p_{1} \leq n+k$. Thus $p_{1} \left\lvert\,\binom{ n+k}{k}\right.$. Therefore, we can assume

$$
\begin{equation*}
t p_{1}>n-2 k^{3 / 4}+4 \tag{3}
\end{equation*}
$$

We wish to show that $t p_{2}>n$ and $(t+1) p_{2} \leq n+k$, which imply that $p_{2} \left\lvert\,\binom{ n+k}{k}\right.$.

Observe that $p_{1} \leq k$ and $k\left(k^{3 / 4}-1\right)=k^{7 / 4}-k \leq n<(t+1) p_{1}$ imply that $t>k^{3 / 4}-2$. Thus, (2) and (3) yield $t p_{2} \geq t p_{1}+2 t>n-2 k^{3 / 4}+4+2 k^{3 / 4}-$ $4=n$ and

$$
\begin{equation*}
(t+1) p_{2}<(t+1) p_{1}+(t+1) c_{2} \ln k<n+k / 2+k^{3 / 4}+t c_{2} \ln k \tag{4}
\end{equation*}
$$

But $t \leq n / p_{1}<2 n / k<2 c_{1} k / \ln k$. Put $\delta=1 / 2 k_{0}^{1 / 4}$. By (4) we have

$$
(t+1) p_{2}<n+k / 2+k^{3 / 4}+2 c_{1} c_{2} k<n+k \quad \text { if } \quad c_{1}<\left(\frac{1}{4}-\delta\right) / c_{2} .
$$

Now only the case $k^{1+c}<n+k<k^{7 / 4}$ remains to be considered. For such n we prove that $\binom{n+k}{k}$ has a prime factor p satisfying $k / 2<p<k / 2+k^{7 / 8}$. To see this, let p be any prime in the interval $\left(k / 2, k / 2+k^{7 / 8}\right)$ and let $t_{p} p$ be the largest multiple of p less than or equal to n. If $t_{p} p \leq n-2 k^{7 / 8}$, then $\left(t_{p}+2\right) p \leq n+k$, and hence $p \left\lvert\,\binom{ n+k}{k}\right.$. Thus, a prime p is unusable only if $n-2 k^{7 / 8}<t_{p} p \leq n$, that is, $\left(n-2 k^{7 / 8}\right) / t_{p}<p \leq n / t_{p}$. Thus, for fixed t_{p} there are at most $2 k^{7 / 8} / t_{p}$ unusable primes with the same multiplier t_{p}. Next we estimate the number of possible values of t_{p}. Clearly, $t_{p}<n /(k / 2)$ and

$$
t_{p}>\frac{n-2 k^{7 / 8}}{k / 2+k^{7 / 8}}>\frac{2 n}{k+3 k^{7 / 8}} \quad \text { provided that } \quad n>2 k+6 k^{7 / 8}
$$

Thus, the number of possible values of t_{p} is at most

$$
\frac{2 n}{k}-\frac{2 n}{k+3 k^{7 / 8}}<\frac{6 n}{k^{9 / 8}}
$$

so the number of unusable primes is at most

$$
\frac{2 k^{7 / 8}}{t_{p}} \cdot \frac{6 n}{k^{9 / 8}}<6 k^{3 / 4}\left(1+\frac{3}{k^{1 / 8}}\right) .
$$

But in $\left(k / 2, k / 2+k^{7 / 8}\right)$ there are, by Ingham's result, more than $k^{7 / 8} /(c \ln k)$ primes, which is of higher order than $k^{3 / 4}$. Thus there are many usable primes.

This completes our proof that $g(k)>c_{1} k^{2} / \ln k$. In fact, our proof can be easily modified to show that if $n<c_{1} k^{2} / \ln k$, then there are more than
$c_{3} k / \ln k$ primes in $(k / 2, k)$ which divide $\binom{n+k}{k}$. No doubt this still holds for much larger values of N, but we cannot prove this.
Theorem 2. If neither $k+1$ nor $k+2$ is prime, then $g(k) \geq(k+1) q-1$, where q is the largest prime power divisor of $k+2$.
Proof. Suppose $\binom{N}{k}$ is good. Lemma 1 below implies that $N \equiv-1 \bmod (k+1)$ and $N \equiv-1$ or $-2 \bmod q$. Then $N \equiv-1$ or $k \bmod (k+1) q$. But $N>k$, so $N \geq(k+1) q-1$.
Corollary 1. If $k+1$ is composite and $k+2=p^{a}(a>1)$, then $g(k) \geq$ $k^{2}+3 k+1$.
Examples. $g(7) \geq 71, g(14) \geq 239(=!), g(23) \geq 599, g(25) \geq 701$.
Corollary 2. If $k+1$ is composite and $k+2=2 p^{a} \quad(a \geq 1)$, then $g(k) \geq$ $\left(k^{2}+3 k\right) / 2$.
Examples. $g(8) \geq 44(=!), g(20) \geq 230, g(24) \geq 324, g(32) \geq 560$, $g(44) \geq 1034$.

We confidently conjecture that $g(k)>k^{2}$ for $k>16$, with the notable exception $g(28)=284$. We conjecture that $g(k)>k^{3}$ for $k>35$, with a charming near exception $g(99)=5675499$. It would not surprise us if $g(k)>k^{5}$ for $k>100$.
Lemma 1. The prime p does not divide $\binom{N}{k}$ if and only if each of the digits of N base p is greater than or equal to the corresponding digit of k base p, or, equivalently, $N \bmod p^{a} \geq k \bmod p^{a}$ for all $a \leq b$ such that $p^{b-1} \leq k<p^{b}$, where $n \bmod m:=n-m\left\lfloor\frac{n}{m}\right\rfloor$.

The proof of Lemma 1 is easy and well known, but we include it for completeness.

Proof. If the digit in the p^{a} column of N base p is greater than or equal to the corresponding digit of k base p, then there are the same number of multiples of p^{a} among $n+1, \ldots, n+k$ as there are among $1, \ldots, k$. If this holds for each a, then p does not divide $\binom{N}{k}$. Otherwise, there are more multiples of p^{a} among $n+1, \ldots, n+k$ than among $1, \ldots, k$, for some a, and p divides $\binom{N}{k}$. For the alternative version, if $N \bmod p^{a} \geq k \bmod p^{a}$, then $n+1, \ldots, n+k$ have the same number of multiples of p^{a} as $1, \ldots, k$ have, for each a, and thus p does not divide the binomial coefficient $\binom{N}{k}$.

2. LEAST PRIME FACTORS OF BINOMIAL COEFFICIENTS

The main problem: Estimate $p\left(\binom{N}{k}\right)$, the least prime factor p of $\binom{N}{k}$.
Case 1. $N>k^{2}$.
Conjecture. We conjecture [6] that in this case, $p\left(\binom{N}{k}\right) \leq N / k$ except for $\binom{62}{6}$. If any b_{i} is composite, then $\left.p\binom{N}{k}\right) \leq \sqrt{b_{l}} \leq \sqrt{N}<N / k$. If $\binom{N}{k}$ is not good, then $p\left(\binom{N}{k}\right) \leq k<N / k$, satisfying our conjecture. For the remainder of Case 1 , we will only consider good binomial coefficients.

To see why we must allow for $\left.p\binom{N}{k}\right)=N / k$, suppose

$$
\begin{equation*}
a_{l}<k, \quad \text { for all } i<k \text { and } a_{k}=k \tag{5}
\end{equation*}
$$

Then $p\left(\binom{N}{k}\right)=N / k$ if and only if the b_{i} are all prime. Sequences satisfying (5) were characterized in [2]. For a given k the a_{i} are always a permutation of $1, \ldots, k$ and the number of such permutations is always a power of 2 . For example, when $k=2459$, there are five operations which we call 2^{11} swap, 3^{7} swap, 7^{4} swap, 2459 swap (followed by symmetric flip), and 1229 +2 twin prime double swap, yielding 32 permutations which can be written immediately. A more mundane example is provided by $k=5$, which admits a 2^{2} swap, yielding just two permutations. When $n=210$ for instance, the a_{i} are $1,4,3,2,5$ and the b_{i} are $211,53,71,107,43$.

If none of the $b_{i}=1$ and $k \mid n+i$, then $p((n+i) / k) \leq(n+i) / k \leq N / k$. So our conjecture remains to be verified only for those good binomial coefficients where at least one of the $b_{i}=1$. If N is very large compared to k (for example, if $N>k!$), then $b_{i}>1$ for all i.

Schinzel has conjectured that for every k there is an $N \geq 2 k$ such that the b_{i} are all prime. We note that $\binom{N}{k}$ can be the product of fewer than k primes all greater than k. For example, when $k=25$ and $n=2080$, then $b_{10}=b_{13}=b_{20}=1$, and the other b_{i} are all prime. Since $\binom{2105}{25}$ is good, it is the product of these 22 primes, each greater than 25.

Definition 2. If $\binom{N}{k}$ is good, we call the number of i such that $b_{i}=1$ the deficiency of $\binom{N}{k}$ and use the notation $d(N, k)$ or d in context.

Thus $d(2105,25)=3$ and $d(215,5)=0$.
Theorem 3. If $\binom{N}{k}$ is good, and $N>c_{4} 2^{k} \sqrt{k}$ (where $c_{4}<0.4$ when $k \geq 94$), then $d(N, k)=0$. (For $k<94$, see Tables 2 and 3.)

The proof of Theorem 3 depends on the following lemma.
Lemma 2. If $\binom{N}{k}$ is good, then $a_{i} \left\lvert\, i\binom{k}{i}\right.$.
Proof of Lemma 2. We use the alternative form $a_{i}=a_{k-\jmath}, 0 \leq j<k$. If $p^{a} \mid a_{k-j}$, then $p^{a} \mid n+k-j$, so $N \bmod p^{a}=j \bmod p^{a}$. Since $\binom{N}{k}$ is good, $j \bmod p^{a} \geq k \bmod p^{a}$ by Lemma 1. Put $q p^{a} \leq j<(q+1) p^{a}$; there are q multiples of p^{a} among $1, \ldots, j$. But since $k \bmod p^{a} \leq j \bmod p^{a}$, there are $q+1$ multiples of p^{a} among the $j+1$ numbers $k, k-1, \ldots, k-j$. The same argument shows that there is one more multiple of p^{d} among $k, \ldots, k-j$ than among $1, \ldots, j$ for any $d \leq a$. Each $d \geq 1$ contributes a count of one to the power of p dividing

$$
\frac{k(k-1) \cdots(k-j+1)(k-j)}{j!}=(k-j)\binom{k}{j}
$$

which is therefore a multiple of p^{a}. Thus, $a_{k-\jmath} \left\lvert\,(k-j)\binom{k}{k-j}\right.$ for $0 \leq$ $j<k$.

Proof of Theorem 3. By Lemma 2, $a_{l} \leq i\binom{k}{l}$. The maximum for this bound occurs when $i=\lfloor(k+1) / 2\rfloor$. If k is even, $a_{l} \leq(k / 2)\binom{k}{k / 2}<2^{k} \sqrt{k / 2 \pi}$, using Stirling's formula. For k odd, $k \geq 95, a_{l}<0.42^{k} \sqrt{k}$. So if $N-k$ is larger than this maximum, then none of the b_{l} equals 1 .

Table 2. Binomial coefficients $\binom{N}{k}$ with deficiency $d>1$

d	k	N	d	k	N
9	28	284*	2	4	7*
				8	44*
4	11	47*		10	74
				12	174*
3	10	$46^{*}+1$		14	239*
	16	241*		27	5179
	25	2105*		28	$8413+1$
	27	1119*		42	96622*
	33	6459*			
	$=g($	+1:	are	sol	tions

We ran a program (based on a more precise bound on a_{i}) to find binomial coefficients with positive deficiency for $k \leq 101$ and all possible N. Tables 2 and 3 give the results of our computer search.

Notice that in Table 3 below there is a positive deficiency at $k=100$ near the top of our search range. But for $k \geq 20$ our published remark [3, p. 523] that for each k there seems to be an N such that $d(N, k)=1$ is way off base. In fact, the first k for which $d(N, k)=0$ for all good $\binom{N}{k}$ is 13 .

We conjecture that $k=42$ is the last k with $d(N, k)>1$, and from looking at the tables, one gets the idea that there are only finitely many binomial coefficients with $d(N, k)>0$. The only values of $k \leq 42$ for which $d=0$ for all good N are 13, 20, 21, 22, 24, 29, 31, 37. However, for $42<k \leq 101$ there are only 13 values of k with $d(N, k)=1$ for some N, and none with $d>1$ for any N.

Notice also that whenever we found $d(N, k)>1$, then $d(g(k), k)>1$. There are 11 values of $k \leq 46$ with $d(g(k), k)=1$. We conjecture that $d(g(k), k)=0$ for $k>46$; this has been checked up to $k=149$.

If $N>k^{2}$, then $\binom{62}{6}$ is the only known exception to $p\left(\binom{N}{k}\right) \leq N / k$. If there were to be any further exceptional binomial coefficients $\binom{N}{k}$ in Case 1, the following four conditions would all have to be satisfied: 1. $d(N, k)>0$, so $k>101.2$. $N \geq g(k)$. 3. If $b_{i} \neq 1$, then b_{i} is prime. 4. If $b_{i} \neq 1$, then $a_{i} \leq k$.
Remark 1. The probability that one of the k consecutive integers of $\{n+i\}$ is divisible by a prime just larger than k is close to 1 . Thus, if $N>k^{3}$, there will almost always be a prime factor less than or equal to N / k.

Case 2. $2 k \leq N \leq k^{2}$.
Lemma 3. We have $p(r) \left\lvert\,\binom{ r k}{k}\right.$.
Proof. Let $p=p(r)$ and $p^{a} \| r k$. Then $r k \bmod p^{a}=0<k \bmod p^{a}$. Thus, by Lemma 1, $p(r) \left\lvert\,\binom{ r k}{k}\right.$. So at $N=k^{2},\binom{N}{k}$ has a prime factor $p(k) \leq k=$ N / k.
Remark 2. If $N=k^{2}-1$, then $p\left(\binom{N}{k}\right)<N / k$.
Proof. Let $p=p(k-1)$. Then $N \bmod p=0$ and $k \bmod p=1$. By Lemma l, $p \left\lvert\,\binom{ N}{k}\right.$, so $p\left(\binom{N}{k}\right) \leq k-1<N / k$.

Table 3. Binomial coefficients with deficiency $d(N, k)=1$

k
3 7*
$4 \quad 13+1$
5 23*
6 62*
7 143*
8 89, 143
9 319, 509
$1094+1,122,187,286,319,362,367,635$
111391
$12188,237,797,3967,5549$
14719
15 719* 799, 2319, 3967, 5471, 10015
$16566,1241,1591+1,2293+1,8017+1,11447,20599,25748,102967+1$
$17 \quad 74267$
$185718,20599,36474,350074$
19 2099*
23 35423*
26 76922, 177659
27 2239, 49279, 3834683, 70204063
$28 \quad 2239,20479,22813,49279,150718,153404,218974,225244,281533,434719,469214$, $1285213+1,1352093,2713213+1,16046653,22465309,70204063,187210813+1$
$303834687,4750206,13572799,17235294,26613311,40820414+1,775587614$
32 371942* 1828859
34 69614* 657719
35 236663, 1869047
$36 \quad 239797,336621,1828863,1869047,4352423,69537661+1,97582118,261813614$, $300402671,1296447917+1,2634716718,7425110718$
3840465463
$395776999,13161839,151479719,228986799,11732392319$
$40 \quad 96620,4171067,37396798,117929965,228986798,652046569,698703290$, $18379537195+1$
41 3017321*
46 692222*
$48 \quad 26687672013624$
$5217692343,23836084,364728823,2083691314934,25081469531324$
$57 \quad 561133817,618031933,498565957819$
$58 \quad 16794619,28676734,1589319934,2052428219,2385269114,4398350459$, $12678949498+1,42659680319,498565957819,8251483160059$
$59 \quad 12678949499$
$65 \quad 113642398319,215662310621,1748704870373$
$66 \quad 138143173371874,345496076602971874$
$70 \quad 6910212567374,153619118501974,1700140546689622,314071326474420095$
7847229486938863
$95 \quad 216198140655426106847$
967097627778251372,803511397376448532847
$100 \quad 121557162475124854$

* $N=g(k) \quad+1: N$ and $N+1$ are both solutions

When N / k is small, it is unacceptably small as a bound for $p\left(\binom{N}{k}\right)$. In fact, there are infinitely many binomial coefficients with $p\left(\binom{N}{k}\right)=3>N / k$ when $N<3 k$.
Theorem 4. For each $k>2$ there is an $N, 2 k \leq N<4 k$, such that $\left.p\binom{N}{k}\right)>$ N / k.
Proof. Let $2^{r-1} \leq k<2^{r}$ and let $N=2^{r}+k$. Then by Lemma $1,\binom{N}{k}$ is odd, since $N \equiv k \bmod 2^{a}$ for $a=1, \ldots, r$. But if $\binom{N}{k}$ is odd and $2 k<N<3 k$, then $p\left(\binom{N}{k}\right) \geq 3>N / k$. Now there will always be an $N=2^{r}+k, 2 k<$ $2^{r}+k<3 k$, except when $2^{r}=2 k$. But when $2^{r-1}=k$, then $\binom{N}{k}$ is odd for all values of N such that $3 k \leq N<4 k$. Now take $N=3^{s}+k, 2 \cdot 3^{s}-1$ or $2 \cdot 3^{s}+k$, whichever is in the region. By Lemma 1, 3 does not divide $\binom{N}{k}$. So $p\left(\binom{N}{k}\right) \geq 5>N / k$.

We now combine Cases 1 and 2.
Definition 3. If $p\left(\binom{N}{k}\right)>N / k$, then $\binom{N}{k}$ is said to be exceptional.
It would be very interesting if someone could prove our conjecture that the number of exceptional $\binom{N}{k}$ with $p>17$ is finite. We wrote a program to find all exceptional $\binom{N}{k}$ where $p>5$ and $k \leq 12000$. The most unusual exception is for $p=29: p\left(\binom{284}{28}\right)=29$. We have found one exception for $p=23$: $p\left(\binom{474}{66}\right)=23$. There appear to be exactly two exceptions for $p=19:\binom{62}{6}$ and $\binom{959}{56}$.

We have two further conjectures:

1. The only exceptional $\binom{N}{k}$ with $p>17$ are these four.
2. $p\left(\binom{N}{k}\right) \leq N / k$ if $N>17 \frac{1}{8} k$.

Notice that 1 . is a bit stronger and implies 2.
We have found eight exceptional $\binom{N}{k}$ with $p=17:\binom{241}{16},\binom{439}{33},\binom{317}{56}$, $\binom{482}{130},\binom{998}{256},\binom{998}{260},\binom{14273}{896},\binom{13277}{900}$, and two near misses: $\binom{239}{14}$ and $\binom{956}{56}$.

Our program gave only one output for $331<k<625$, namely, $p\left(\binom{3574}{406}\right)=$ 13 , and no $p>13$ for any k other than those already listed. Thus, at this point in time, it is still possible that $\left.p\binom{N}{k}\right) \leq \max (N / k, 13)$, with the twelve exceptions listed above.

3. A related problem

We now turn our attention to a related problem. We study the number of indices i where $b_{i}=1$ without requiring that $\binom{N}{k}$ be good.
Theorem 5. Assume $N \geq 2 k$ and denote by $f(N, k)$ the number of indices i for which $b_{i}>1$. Then $f(N, k) \geq(1-\epsilon) \pi(k)$ for $k>k_{0}(\epsilon)$.
Proof. We use the strong form of the prime number theorem: the number of primes p such that $N-k<p \leq N$ is greater than $(1-\epsilon) \pi(k)$ if $N<k^{1+c}$ for any $c \leq 1 / 3$. This immediately gives the theorem for $2 k \leq N<k^{4 / 3}$.

In fact, the contribution to $b_{i}>1$ from primes $k<p \leq N / 2$ becomes significant even when $N=(2+\delta) k$. When $N=3 k$, use the quoted theorem for $k<p \leq N / 2$ and $2 k<p \leq N$ to get $f(N, k) \geq\left(\frac{3}{2}-\epsilon\right) \pi(k)$ for large k, and similarly one can get $f(N, k)>(1+\mu) \pi(k)$ when $N \geq(2+\delta) k$.

Now if $N \geq k^{4 / 3}$, we will show that $f(N, k)>k / 8$ for k large enough. First observe that $\binom{N}{k} \geq N^{k} / k^{k}$. The well-known result that $p^{\alpha} \leq N$ when $p^{\alpha} \|\binom{ N}{k}$ follows easily from Lemma 1 . Thus we have

$$
\begin{equation*}
N^{k} / k^{k} \leq\binom{ N}{k}<N^{\pi(k)} N^{f(N, k)} \tag{6}
\end{equation*}
$$

Now $N^{3 / 4} \geq k$ and, for $k>10^{4}, \pi(k)<k / 8$. Thus, from (6), using $N / k \geq$ $N^{1 / 4}$, we get $N^{k / 4} \leq N^{k} / k^{k}<N^{k / 8} N^{f(N, k)}$ and thus $f(N, k)>k / 8>\pi(k)$, which finishes the proof of the theorem.

It would be quite difficult to give good explicit inequalities for $f(N, k)$.
Corollary 3. If $N \geq 2 k$, there are at least $(1-\epsilon) \pi(k)$ primes greater than k dividing $\binom{N}{k}$. In fact, when $N \leq k^{2}$, the count of primes greater than k is $f(N, k)$, since all b_{i} are prime.

Notice that $f(21,10)=3<\pi(20)-\pi(10)=4$. Is it true that for every t there are integers N and k for which $f(N, k) \leq \pi(2 k)-\pi(k)-t$? For $f(213,100)$ we can take $t=3$.

We conjecture that there are examples with arbitrarily large t. Suppose there is a large gap in the primes between p_{r} and p_{r+1}. Take $N=p_{r+1}-1$ and $2 k=p_{r}+1$. Then $f(N, k)$ is the number of primes between $N-k$ and N, plus the number of primes between k and $N / 2$. Since $\pi(N)=\pi(2 k)$, we get

$$
f(N, k)=\pi(2 k)-\pi(k)-(\pi(N-k)-\pi(N / 2)) .
$$

As an example, the first gap of 320 between consecutive primes is listed by Lander and Parkin [4]. Put $N=2300942868$ and $k=1150471275$. The primes between $N / 2$ and $N-k$ are $1150471000+297,307,319,369,373$, 393, 417, giving an example with $t=7$.

From the strong form of the prime number theorem, we deduce that only the interval $2 k<N<2 k+k^{c}$ has to be searched. No doubt the only possible examples with large t lie in the interval $2 k<N<2 k+c \ln k$, where $c=$ $c(t)>0$.

Acknowledgment

We thank the referee for his careful reading.

Bibliography

1. E. F. Ecklund, P. Erdős, and J. L. Selfridge, A new function associated with the prime factors of $\binom{n}{k}$, Math. Comp. 28 (1974), 647-649.
2. P. Erdős, C. B. Lacampagne, and J. L. Selfridge, Prime factors of binomial coefficients and related problems, Acta Arith. 49 (1988), 507-523.
3. A. E. Ingham, On the differences between consecutive primes, Quart. J. Math. Oxford 8 (1937), 255-266.
4. L. J. Lander and T. R. Parkin, On first appearance of prime differences, Math. Comp. 21 (1967), 483-488.
5. R. Scheidler and H. C. Williams, A method of tabulating the number-theoretic function $g(k)$, Math. Comp. 59 (1992), 251-257.
6. J. L. Selfridge, Some problems on the prime factors of consecutive integers, Abstract 747-10-9, Notices Amer. Math. Soc. 24 (1977), A456-A457.
(P. Erdős) c/o Dr. R. L. Graham, AT\&T Bell Laboratories, Murray Hill, New Jersey 07974

Office of Research, U. S. Department of Education, Washington, DC 20008
E-mail address: clacampa@nsf.gov

Department of Mathematics, Northern Illinois University, DeKalb, Illinois 60115

[^0]: Received by the editor July 27, 1992 and, in revised form, December 11, 1992..
 1991 Mathematics Subject Classification. Primary 11B65, 11N37.

