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ABSTRACT. We estimate the least prime factor p of the binomial coefficient 
(N) for k > 2 . The conjecture that p < max(N/k, 29) is supported by 
considerable numerical evidence. Call a binomial coefficient good if p > k 
For 1 < i < k write N - k + i = a,b1, where bi contains just those prime 
factors > k , and define the deficiency of a good binomial coefficient as the 
number of i for which b= 1 . Let g(k) be the least integer N > k + 1 such 
that (N) is good. The bound g(k) > ck2/ lnk is proved. We conjecture that 
our list of 17 binomial coefficients with deficiency > 1 is complete, and it seems 
that the number with deficiency 1 is finite. All (N) with positive deficiency and 
k < 101 are listed. 

1. GOOD BINOMIAL COEFFICIENTS 

Consider a sequence of k > 2 positive integers {n + i} = n + 1, ... , n + k 
with n + i = aibi , where plai implies p < k , and plb, implies p > k for any 
prime p ; i.e., the a- have the prime factors up to k, and the bi have all the 
larger prime factors. 

Since the binomial coefficient (nZk) is an integer, k! H a- . We are con- 
cerned with the least prime factor of any number in the sequence, except for 
those composing k! , that is, the least prime factor of (nkk) 

Definition 1A. A sequence of consecutive integers alb1, ... , akbk , where pIa, 
implies p < k, and pIbi implies p > k, is said to be good if Hla, = k! . 

We denote the least prime factor of m by p(m). We frequently find it 
convenient to write N = n + k . 

Definition 1B. The binomial coefficient ([) is said to be good if P((N)) > k 
Note that Definition 1B is equivalent to stating that the k-sequence {N - 

k + i} is good or that Hla, = k! or that gcd((N), k!) = 1 . Further, when k 
is fixed and ([) is good, we say that N is good with respect to k. 

Ecklund, Erdos, and Selfridge [1] studied the function g(k), the least in- 
teger N > k + 1 such that P(([)) > k , so g(k) is the least N- which 
is good with respect to k. They showed that g(k) > 2k for k > 4 and 
established weak upper and lower bounds on g(k). They determined g(k) 
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TABLE 1. Relative minima and maxima of g(k), k < 149 

Relative minima Maxima Maxima 
k d > 0 g(k) k g(k) k g(k) 
2 6 2 6 61 2237874623 
4 2 7 3 7* 71 3184709471 
5 1 23 5 23* 72 4179979724 
8 2 44 6 62* 73 15780276223 

10 3 46 7 143* 74 19942847999 
11 4 47 9 159 75 48899668971 
12 2 174 12 174** 83 79 7012560343 
14 2 239 13 2239 89 352 4996442239 
16 3 241 17 5849 103 509 2910127863 
28 9 284 20 43196 104 600 3175578749 
33 3 6459 24 193049 107 6260627365739 
35 37619 29 240479 108 9746385386989 
40 85741 31 341087 109 73245091349869 
42 2 96622 32 371942* 110 9479 4806842238 
52 366847 38 487343 111 222261611307119 
58 4703099 39 767919 113 517968108138869 
99 5675499 41 3017321* 114 598199028602614 

100 3935600486 43 24041599 115 1271435 6616655615 
102 17 5209712494 44 45043199 139 25972027636644319 
106 48 8898352367 47 232906799 141 63331523816662671 
135 315 7756005623 
136 4138898693368 
148 11808400809148 d=d(g(k),k) *d1= I d=2 

for 2 < k < 40 and k = 42, 46, 52, and showed by direct search that 
g(k) > 2.5 x 106 for all other k < 100 . After discussion with us, Scheid- 
ler and Williams [5] found all values of g(k) for k < 140, using the new 
open architecture sieve at the University of Manitoba. The list of these val- 
ues appears in [5], and the sieving continues. In Table 1 we present g(k) 
where g(k) < g(t) for k < t < 150 and where g(k) > g(t) for t < k . No 
doubt, g(k) increases faster than polynomially and surely g(k) < (1 + C),f(k), 

but we have no proof. When k is large, it is clear to every right-thinking person 
that (k) has a prime factor in (k/2, k) for every N < exp(ck/ ln k) . It seems 
that g(k) increases very irregularly, and no doubt, 

lim sup g(k + 1)/g(k) = oc, lim inf g(k + 1)/g(k) = 0. 

Note that g(29)/g(28) > 846 , and g(99)/g(98) < 1/1872 . 

Upto k=148, g(k+1)-g(k) =Oorlonlyat k = 3,10, 18 and36. 
It was shown in [1] that there is an absolute constant c > 0 for which 

g(k) > k?+c . Since c is small, the following is an improved lower bound. 

Theorem 1. There holds g(k) > cik2/ ln k , for some absolute constant c1 > 0 

Proof. We first show that if k7/4 < N < cik2/lnk, where k > ko(cl), then (') 
has a prime factor p satisfying 

(1) k/2 < p < k/2 + k34 

Begin by noting that Ingham [3] proved that the number of primes p satisfying 
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(1) is greater than k3/4/(c2 in k) for some absolute constant c2 . By an averaging 
argument, there are two primes Pi and P2 satisfying 

(2) k/2 < P1 < P2 < P1 + c2 In k < k/2 + k314 

and Pi < k/2 + k314 - 2 . Now we show that for k7/4 < N < c1k2/ Ink , either 
Pi or P2 divides (n+k) Let tp1 be the largest multiple of Pi which is less 
than or equal to n, so that n < (t + 1)pI . It follows immediately from (2) that 
if tp1 < n - 2k314 + 4 , then (t + 2)pl < n + k . Thus Pi (n3k) . Therefore, we 
can assume 

(3) tp > n - 2k314 + 4. 

We wish to show that tp2 > n and (t + 1)P2 < n + k , which imply that 

P21 (k) 
Observe that P1 < k and k(k314 - 1) = k7/4 - k < n < (t + 1)p1 imply that 

t > k314 - 2 . Thus, (2) and (3) yield tp2 > tp1 + 2t > n - 2k34 + 4 + 2k314 - 
4 = n and 

(4) (t+ 1)P2 < (t+ 1)pI +(t+ 1)c2Ink < n+k/2+k314+tc2Ink. 

But t < n/pl < 2n/k < 2cik/lnk . Put a = 1/2k1/4 . By (4) we have 

(t + 1)P2 < n + k/2 + k314 + 2c1c2k < n + k if c1 < (4 -)/C2- 

Now only the case kl+c < n + k < k7/4 remains to be considered. For such n 
we prove that (n+k) has a prime factor p satisfying k/2 < p < k/2 + k7/8 

To see this, let p be any prime in the interval (k/2, k/2 + k7/8) and let tpp 
be the largest multiple of p less than or equal to n. If tpp < n - 2k7!8, then 

(tp + 2)p < n + k, and hence pI (n+k) . Thus, a prime p is unusable only if 
n - 2k7!8 < tpp < n, that is, (n - 2k7/8)/tp < p < n/tp . Thus, for fixed tp 
there are at most 2k7/8/tp unusable primes with the same multiplier tp . Next 
we estimate the number of possible values of tp . Clearly, tp < n/(k/2) and 

P k/2 + k7/8 > k +3k7!8 provided that n > 2k + 6k718. 

Thus, the number of possible values of tp is at most 

2n 2n 6n 
k k + 3k7/8 < k9/8 

so the number of unusable primes is at most 

2k7!8 6n 314 1+ 

tp k91/ 

But in (k/2, k/2 + k7/8) there are, by Ingham's result, more than k7/8/(c In k) 
primes, which is of higher order than k314 . Thus there are many usable primes. 

This completes our proof that g(k) > c1k2/ Ink . In fact, our proof can 
be easily modified to show that if n < c1k2/ Ink, then there are more than 
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c3k/ Ink primes in (k/2, k) which divide (nZk) . No doubt this still holds for 
much larger values of N, but we cannot prove this. n 

Theorem 2. If neither k + 1 nor k + 2 is prime, then g(k) > (k + I)q - 1 
where q is the largest prime power divisor of k + 2 . 

Proof. Suppose (kN) is good. Lemma 1 below implies that N -1 mod (k + 1) 
and N=-I or -2modq. Then N_-I or kmod(k+l)q. But N>k, 
so N > (k + ?)q -I. i 

Corollary 1. If k + 1 is composite and k + 2 = pa (a > 1), then g(k) > 
k2+3k+ 1. 

Examples. g(7) > 71, g(14) > 239 (=!), g(23) > 599, g(25) > 701. 

Corollary 2. If k + 1 is composite and k + 2 = 2pa (a > 1), then g(k) > 

(k2 + 3k)/2 . 

Examples. g(8) > 44 (=!), g(20) > 230, g(24) > 324, g(32) > 560, 
g(44) > 1034 . 

We confidently conjecture that g(k) > k2 for k > 16, with the notable 
exception g(28) = 284 . We conjecture that g(k) > k3 for k > 35, with 
a charming near exception g(99) = 5675499 . It would not surprise us if 
g(k) > k for k> 100. 

Lemma 1. The prime p does not divide (N) if and only if each of the digits of 
N base p is greater than or equal to the corresponding digit of k base p, or, 
equivalently, N mod pa > k mod pa for all a < b such that pb- I < k < pb, 

where n mod m:= n -mLnJ 

The proof of Lemma 1 is easy and well known, but we include it for com- 
pleteness. 

Proof. If the digit in the pa column of N base p is greater than or equal 
to the corresponding digit of k base p, then there are the same number of 
multiples of pa among n + 1, ..., n + k as there are among 1, ..., k . If 
this holds for each a, then p does not divide (N) . Otherwise, there are more 
multiples of pa among n , .. I , n + k than among 1, .. ., k, for some a, 
and p divides (N) . For the alternative version, if N mod pa > k mod pa, 
then n + 1,..., n + k have the same number of multiples of pa as 1, ... k 
have, for each a, and thus p does not divide the binomial coefficient (N) . ? 

2. LEAST PRIME FACTORS OF BINOMIAL COEFFICIENTS 

The main problem: Estimate P( (N)) , the least prime factor p of (kN) 

Casel. N>k2. 

Conjecture. We conjecture [6] that in this case, P((N)) < N/k except for ( 62) 

If any b- is composite, then P((N)) < b, < N < N/k . If (N) is not 

good, then p((N)) < k < Nlk , satisfying our conjecture. For the remainder of 
Case 1, we will only consider good binomial coefficients. 

To see why we must allow for P((N)) = N/k , suppose 

(5) a, < k, for all i < k and ak = k. 
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Then p((N)) = N/k if and only if the bi are all prime. Sequences satisfying 
(5) were characterized in [2]. For a given k the ai are always a permutation 
of 1, ..., k and the number of such permutations is always a power of 2. 
For example, when k = 2459, there are five operations which we call 211 
swap, 37 swap, 74 swap, 2459 swap (followed by symmetric flip), and 1229 
+ 2 twin prime double swap, yielding 32 permutations which can be written 
immediately. A more mundane example is provided by k = 5 , which admits 
a 22 swap, yielding just two permutations. When n = 210 for instance, the a1 
are 1, 4, 3,2,5 and the bi are 211, 53, 71, 107, 43. 

If none of the bi = 1 and kin + i, then p((n + i)/k) < (n + i)/k < N/k . So 
our conjecture remains to be verified only for those good binomial coefficients 
where at least one of the bi = 1 . If N is very large compared to k (for 
example, if N > k!), then bi > 1 for all i. 

Schinzel has conjectured that for every k there is an N > 2k such that 
the bi are all prime. We note that (N) can be the product of fewer than k 
primes all greater than k. For example, when k = 25 and n = 2080, then 
blo = b13 = b2O = 1, and the other bi are all prime. Since (225) is good, it is 
the product of these 22 primes, each greater than 25. 

Definition 2. If (N) is good, we call the number of i such that bi = 1 the 
deficiency of (k) and use the notation d(N, k) or d in context. 

Thus d(2105, 25) = 3 and d(215, 5) = 0 . 

Theorem 3. If (N) is good, and N > c42k VW (where C4 < 0.4 when k > 94), 
then d(N, k) = 0 . (For k < 94, see Tables 2 and 3.) 

The proof of Theorem 3 depends on the following lemma. 

Lemma 2. If (N) is good, then a1 i (ki) 

Proof of Lemma 2. We use the alternative form ai = ak1 , 0 < j < k . If 
pa Iak_J, then pa In + k - j , so N modpa = j modpa . Since (N) is good, 
j mod pa > k mod pa by Lemma 1. Put qpa < j < (q + l)pa ; there are q mul- 
tiples of pa among 1, . . ., j . But since k mod pa < j mod pa, there are q + 1 
multiples of pa among the j + 1 numbers k, k - l, ..., k - j . The same 
argument shows that there is one more multiple of pd among k, ... , k - j 
than among 1, ... , j for any d < a . Each d > 1 contributes a count of one 
to the power of p dividing 

k(k - l ) ..(k - i + l1)(k - j) .k-i Kk 

which is therefore a multiple of pa. Thus, ak1j (k- I)(kkJ) for 0 < 

j<k . Eu 

Proof of Theorem 3. By Lemma 2, a, < i (k) . The maximum for this bound 
occurs when i = L(k + 1)/2j . If k is even, a, < (k/2)(kjx2) < 2k k/l27r, using 

Stirling's formula. For k odd k > 95, a, < 0.4 2k v . So if N - k is larger 
than this maximum, then none of the b, equals 1. C 
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TABLE 2. Binomial coefficients (N) with deficiency d > 1 

d k N d k N 

9 28 284* 2 4 7* 
8 44* 

4 11 47* 10 74 
12 174* 

3 10 46*+1 14 239* 
16 241* 27 5179 
25 2105* 28 8413+1 
27 1119* 42 96622* 
33 6459* 

* N=g(k) +1: N and N+1 arebothsolutions 

We ran a program (based on a more precise bound on a-) to find binomial 
coefficients with positive deficiency for k < 101 and all possible N. Tables 2 
and 3 give the results of our computer search. 

Notice that in Table 3 below there is a positive deficiency at k = 100 near 
the top of our search range. But for k > 20 our published remark [3, p. 523] 
that for each k there seems to be an N such that d(N, k) = 1 is way off base. 
In fact, the first k for which d(N, k) = 0 for all good (N) is 13. 

We conjecture that k = 42 is the last k with d(N, k) > 1, and from 
looking at the tables, one gets the idea that there are only finitely many binomial 
coefficients with d(N, k) > 0 . The only values of k < 42 for which d = 0 
for all good N are 13, 20, 21, 22, 24, 29, 31, 37. However, for 42 < k < 101 
there are only 13 values of k with d(N, k) = 1 for some N, and none with 
d > 1 for any N. 

Notice also that whenever we found d(N, k) > 1, then d(g(k), k) > 1 
There are 11 values of k < 46 with d(g(k), k) = 1 . We conjecture that 
d(g(k), k) = 0 for k > 46; this has been checked up to k = 149 . 

If N > k2, then (662) is the only known exception to p((N)) < N/k . If 
there were to be any further exceptional binomial coefficients (N) in Case 1, 
the following four conditions would all have to be satisfied: 1. d(N, k) > 0, 
so k> 101 . 2. N> g(k) . 3. If bi7 $1, then bi is prime. 4. If bi : 1, then 
ai < k . 

Remark 1. The probability that one of the k consecutive integers of {n + i} 
is divisible by a prime just larger than k is close to 1. Thus, if N > k3 , there 
will almost always be a prime factor less than or equal to N/k . 

Case 2. 2k < N< k2 . 

Lemma 3. We have p(r) ) (rk) 
Proof. Let p = p(r) and paHrk . Then rk mod pa = 0 < k mod pa . Thus, 
by Lemma 1, p(r) (rk) . So at N = k2, (N) has a prime factor p(k) < k = 
N/k. o 

Remark 2. If N = k2 _ 1, then p((N)) < N/k . 

Proof. Let p=p(k - 1) . Then N modp = 0 and k modp= 1. By Lemma 1, 
PI(N), so P((N)) < k- 1 < N/k . o 
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TABLE 3. Binomial coefficients with deficiency d(N, k) = 1 

k Values of N 
3 7* 
4 13+1 
5 23* 
6 62* 
7 143* 
8 89, 143 
9 319, 509 

10 94+1, 122, 187, 286, 319, 362, 367, 635 
11 1391 
12 188,237,797,3967,5549 
14 719 
15 719* 799, 2319, 3967, 5471, 10015 
16 566, 1241, 1591+1, 2293+1, 8017+1, 11447, 20599, 25748, 102967+1 
17 74267 
18 5718,20599,36474,350074 
19 2099* 
23 35423* 
26 76922,177659 
27 2239,49279,3834683,70204063 
28 2239,20479,22813,49279,150718,153404,218974,225244,281533,434719,469214, 

1285213+1, 1352093, 2713213+1, 16046653, 22465309, 70204063, 187210813+1 
30 3834687, 4750206, 13572799, 17235294, 26613311, 40820414+1, 775587614 
32 371942* 1828859 
34 69614* 657719 
35 236663,1869047 
36 239797, 336621, 1828863, 1869047, 4352423, 69537661+1, 97582118, 261813614, 

300402671, 1296447917+1, 2634716718, 7425110718 
38 40465463 
39 5776999, 13161839, 151479719, 228986799, 11732392319 
40 96620,4171067,37396798,117929965,228986798,652046569,698703290, 

18379537195+1 
41 3017321* 
46 692222* 
48 26687672013624 
52 17692343, 23836084, 364728823, 2083691314934, 2508 1469531324 
57 561133817, 618031933, 498565957819 
58 16794619,28676734,1589319934,2052428219,2385269114,4398350459, 

12678949498+1, 42659680319, 498565957819, 825 1483160059 
59 12678949499 
65 113642398319, 21 5662310621, 1748704870373 
66 138143173371874, 345496076602971874 
70 691 0212567374, 15361 9118501974, 1700140546689622, 314071326474420095 
78 47229486938863 
95 216198140655426106847 
96 7097627778251372, 803511397376448532847 

100 121557162475124854 
* N = g(k) + 1: N and N + 1 are both solutions 
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When N/k is small, it is unacceptably small as a bound for p( (kN)) . In fact, 
there are infinitely many binomial coefficients with P((N)) = 3 > N/k when 
N < 3k. 

Theorem 4. For each k > 2 there is an N, 2k < N < 4k , such that P((N)) > 
N/k . 

Proof. Let 2r-1 < k < 2r and let N = 2r + k . Then by Lemma 1, (N) is odd, 

since N-kmod2a for a= 1,...,r. Butif (N) isoddand 2k<N<3k, 

then p((N)) > 3 > N/k . Now there will always be an N = 2r + k, 2k < 

2r + k < 3k , except when 2r = 2k . But when 2r-1 = k , then (N) is odd for 
all values of N such that 3k < N < 4k . Now take N = 3s + k, 2 * 3s - 1 or 

2 . 3s + k , whichever is in the region. By Lemma 1, 3 does not divide (N) . So 

P((N)) > 5 > Nlk . Ei 

We now combine Cases 1 and 2. 

Definition 3. If P((N)) > N/k , then (N) is said to be exceptional. 
It would be very interesting if someone could prove our conjecture that the 

number of exceptional (N) with p > 17 is finite. We wrote a program to find 
all exceptional (N) where p > 5 and k < 12000 . The most unusual exception 
is for p = 29P: ((28)) = 29 . We have found one exception for p = 23 

P((464)) = 23 . There appear to be exactly two exceptions for p = 19: (%2) 

and ( 56) 
We have two further conjectures: 
1. The only exceptional (N) with p > 17 are these four. 
2. P(()) < N/k if N > 17 k. 

Notice that 1. is a bit stronger and implies 2. 
We have found eight exceptional (N) with p = 17: (%141) (439), (3 [7) 

482) (998) (998) (14273) (13277), and two near misses: (23) and ( 956) 

Our program gave only one output for 331 < k < 625, namely, p((4506)) = 

13, and no p > 13 for any k other than those already listed. Thus, at this 
point in time, it is still possible that p((N)) < max(N/k, 13), with the twelve 
exceptions listed above. 

3. A RELATED PROBLEM 

We now turn our attention to a related problem. We study the number of 
indices i where bi = 1 without requiring that (N) be good. 

Theorem 5. Assume N > 2k and denote by f(N, k) the number of indices i 

for which bi > 1 . Then f(N, k) > (1 - E)7r(k) for k > ko(E) . 

Proof. We use the strong form of the prime number theorem: the number of 

primes p such that N - k < p < N is greater than (1 - E)r(k) if N < kl+c 

for any c < 1/3 . This immediately gives the theorem for 2k < N < k413 

In fact, the contribution to bi > 1 from primes k < p < N/2 becomes 
significant even when N = (2 + 5)k . When N = 3k , use the quoted theorem 

for k<p<N/2 and 2k<p<N toget f(N k)>(3-E)r(k) forlarge k, 

and similarly one can get f(N, k) > (1 + u)r(k) when N > (2 + 5)k . 
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Now if N > k413, we will show that f(N, k) > k/8 for k large enough. 
First observe that (N) > Nk/kk . The well-known result that pa < N when 
pa (N) follows easily from Lemma 1. Thus we have 

(6) N kIk k< Nk < N7t (k) Nf(N, k) 

Now N314 > k and, for k > 104 , n(k) < k/8 . Thus, from (6), using N/k > 
N1/4 , we get Nk/4 < Nk/kk < Nk/8Nf(N,k) and thus f(N, k) > k/8 > 7(k) 
which finishes the proof of the theorem. o 

It would be quite difficult to give good explicit inequalities for f (N, k) . 

Corollary 3. If N > 2k, there are at least (1 - c)7r(k) primes greater than k 
dividing (N) . In fact, when N < k2, the count of primes greater than k is 
f(N, k), since all bi are prime. 

Notice that f(21, 10) = 3 < 7r(20) - 7r(10) = 4 . Is it true that for every 
t there are integers N and k for which f(N, k) < 7r(2k) - 7r(k) - t ? For 
f (213, 100) we can take t = 3 . 

We conjecture that there are examples with arbitrarily large t. Suppose there 
is a large gap in the primes between Pr and Pr+I . Take N = Pr+I - 1 and 
2k = Pr + 1 . Then f(N, k) is the number of primes between N - k and N, 
plus the number of primes between k and N/2 . Since 7r(N) = 7r(2k), we get 

f(N, k) = 7(2k) - r(k) - (7(N - k) -(N/2)). 

As an example, the first gap of 320 between consecutive primes is listed by 
Lander and Parkin [4]. Put N = 2300942868 and k = 1150471275 . The 
primes between N/2 and N - k are 1150471000 + 297, 307, 319, 369, 373, 
393, 417, giving an example with t = 7 . 

From the strong form of the prime number theorem, we deduce that only 
the interval 2k < N < 2k + kc has to be searched. No doubt the only possible 
examples with large t lie in the interval 2k < N < 2k + c lnk , where c = 
c(t) > 0 . 
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